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Abstract

Schools are known to play a significant role in the spread of influenza. High vaccination coverage can reduce infectious
disease spread within schools and the wider community through vaccine-induced immunity in vaccinated individuals and
through the indirect effects afforded by herd immunity. In general, herd immunity is greatest when vaccination coverage is
highest, but clusters of unvaccinated individuals can reduce herd immunity. Here, we empirically assess the extent of such
clustering by measuring whether vaccinated individuals are randomly distributed or demonstrate positive assortativity
across a United States high school contact network. Using computational models based on these empirical measurements,
we further assess the impact of assortativity on influenza disease dynamics. We found that the contact network was
positively assortative with respect to influenza vaccination: unvaccinated individuals tended to be in contact more often
with other unvaccinated individuals than with vaccinated individuals, and these effects were most pronounced when we
analyzed contact data collected over multiple days. Of note, unvaccinated males contributed substantially more than
unvaccinated females towards the measured positive vaccination assortativity. Influenza simulation models using a
positively assortative network resulted in larger average outbreak size, and outbreaks were more likely, compared to an
otherwise identical network where vaccinated individuals were not clustered. These findings highlight the importance of
understanding and addressing heterogeneities in seasonal influenza vaccine uptake for prevention of large, protracted
school-based outbreaks of influenza, in addition to continued efforts to increase overall vaccine coverage.
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Introduction

Influenza is an infectious disease affecting 5–20% of the

population every year [1]. Schools are thought to play a major

role in the spread of influenza into the community [2–4], and high

transmission within schools is thought to be due to frequent, close

contact between children [5], less acquired immunity in children

[6], and more intense and prolonged shedding of the virus in

children [7,8]. Vaccines are a key tool to prevent influenza illness,

and reduce disease spread [9–11]. Interrupting transmission of

influenza in schools through high levels of vaccine-induced

immunity among school-age children will protect unvaccinated

individuals both in schools and in the wider community through

the indirect protection offered by herd immunity [12–15]; that is, a

reduction in transmission among both vaccinated and unvacci-

nated populations due to a high level of vaccine-induced

immunity.

The effects of herd immunity are greatest when vaccination

coverage reaches a critical threshold above which circulation of

the respective pathogen will be interrupted. Conversely, average

and maximal outbreak size will increase when vaccination

coverage declines [16]. Lower vaccination coverage and dimin-

ished herd immunity have been blamed for the increased

transmission and severity of outbreaks for a number of important

diseases of public health concern [16,17]. For example, this effect

was observed in the Netherlands between 1999 and 2000 during a

major measles outbreak, which primarily impacted members of a

religious community that did not accept routine vaccination. This

occurred despite national measles vaccination coverage .95%,

the target threshold for measles control [18].
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The assortativity coefficient, r, is used in network analysis to

determine whether there is a tendency of nodes to associate with

similar nodes with respect to a particular property (e.g., gender,

ethnicity, vaccination status etc.,) [4,19,20]. If r.0, a network is

said to be positively assortative for the property of interest [20].

Recent modeling studies on influenza transmission have begun to

analyze the impact of non-random, positively assortative unvac-

cinated individuals in contact networks [21,22]. These studies have

shown that clusters of unvaccinated individuals can result in an

increased likelihood of large disease outbreaks. Further investiga-

tion of whether vaccination is assortative becomes particularly

important when we consider the spread of influenza in schools, as

multiple generations of transmission through assorted unvaccinat-

ed students could increase the likelihood of community-wide

outbreaks [13,23,24]. Such data will be necessary for models to

accurately predict the impact of vaccination, the limits of herd

immunity, and thus the potential size and duration of disease

outbreaks.

In this study, we specifically measure empirically for the first

time whether assortativity in seasonal influenza vaccination status

exists within a close contact network at a United States (US) high

school, and examine the potential significance of such vaccine

assortativity on influenza outbreaks. To do this, we captured a

high-resolution contact network using wireless sensor devices

(‘‘motes’’) worn by members of a high school community across

multiple days. We also distributed an online health survey, which

asked members of the school to specifically indicate whether they

had been vaccinated with the 2011/2012 influenza vaccine.

Combined, these data allowed us to measure vaccination

assortativity of the network and to run simulations of influenza

disease outbreaks.

Methods

Ethics
To participate in the study, students less than 18 years old were

asked to read an assent form that explained the study, and to

provide written assent if they agreed to the study. Informed

consent was not obtained from next of kin, caretakers or guardians

on the behalf of the minors/children participants in the study

because there was no greater than minimum risk to participants

wearing the motes or completing the online health survey. Further,

mote deployment and data retrieval followed previously published

protocols in Salathé et al. 2010 [25]. The Pennsylvania State

University IRB (IRB # 37640) and the CDC IRB authorization

agreement approved the study protocol and related consent

procedure for minors. Students over 18 years old, teachers, and

staff were asked to read an informed consent form that explained

the study and provide written consent if they agreed to the study.

The assent/informed consent forms also asked participants to

provide their email address if they wanted to receive the online

health survey. All participants received an extra form for their own

records. Once the research team received the assent/informed

consent forms, each participant was assigned a unique code

number to protect participants’ privacy. A project server stored

code numbers and participants’ information, and security mea-

sures were put in place to ensure the information was protected,

including the framework Django, which has multiple levels of

security installed by default. Only research team members named

on the approved IRB applications had access to the list of code

numbers and participants’ information. After the data was

collected, cleaned, and analyzed, the list linking code number to

participants’ information was destroyed. The Pennsylvania State

University IRB (IRB # 37640) and the CDC IRB authorization

agreement approved the study protocol with respect to data

collection and storage.

Data collection
Motes store close proximity records (CPRs), which are detection

events for face-to-face interactions within a distance of #2 meters.

Mote deployment and data retrieval protocols were similar to

those previously described [25,26]. Briefly, motes were placed in a

pouch attached to a lanyard, and worn around participants’ necks

during the school day. Each mote was labeled with a unique

identification (ID) number. The beaconing frequency of a mote

was 1 per 20 seconds; therefore, data were recorded with a

frequency of three recordings per minute. We assume that a

potentially contagious contact between two participants occurred

if at least one of the two involved motes recorded the other mote’s

signal. Motes were deployed on three separate days during the

spring of 2012. Mote day 1 was Tuesday, January 24th; mote day

2 was Friday, March 2nd; and mote day 3 was Tuesday, March

13th. The weather on each mote day was similar: pleasant and

sunny. On the first mote day, paperwork was handed out with the

motes that described the study. On those forms, participants could

indicate whether they wanted to receive an online health survey by

providing an email address. This meant that the online health

survey was only sent to individuals who signed up to the study on

the first mote deployment day. After registration and entry into the

survey website, respondents were sent an email on Saturday,

February 4th, 2012, that contained a link to the health survey.

Reminder emails were sent four days later before the survey closed

on Thursday, February 9th. In addition to demographic questions,

the health survey asked participants: ‘‘Since August 1, 2011, have

you been vaccinated against the flu?’’ The choice of answer was

‘‘Yes’’ or ‘‘No’’ with horizontal radio buttons next to the choice so

that only one answer could be given.

Network properties
Network properties relevant for the spread of infectious disease

including number of nodes and edges, density, average degree,

maximum cluster size, transitivity, average strength, coefficient of

degree variance, average path length, modularity, and vaccination

assortativity, were all calculated using igraph 0.6 in R 2.15.1.

Vaccination assortativity was calculated using the assortativity

coefficient, r (where r.0 describes a positively assortative network,

where there is a tendency of nodes to associate with similar nodes

with respect to a given property, and r,0 describes a network,

where there is a tendency of nodes to associate with dissimilar

nodes [19,20]). Of note, for each individual mote day, or all three

mote days combined, the contact duration (in minutes) at which

the average path length peaked for the entire network (Fig. 1I; Fig.

S1I–S3I) was used as the maximum contact duration for the

assortativity plots (Fig. 2), because networks disassemble beyond

these values.

Network assortativity and largest component size
We compared the empirical networks to networks with

randomized vaccination patterns with respect to both vaccination

assortativity and largest component size. We iterated through a

range of contact duration cutoffs with a step width of three CPR

(i.e., one minute). For each cutoff, we calculated the vaccination

assortativity and the size of the largest connected component of the

sub-network of non-vaccinated individuals using both the empir-

ical contact and the self-reported vaccination data. We then

created 1,000 different realizations of networks with random

vaccination patterns based on the unaltered, empirical contact

data and shuffled vaccination data. To create the 1,000

Positive Network Assortativity of Influenza Vaccination
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Figure 1. Network statistics on the combined contact data collected during all three school days, for the entire contact graph
(orange line) and for the unvaccinated contact graph (blue line). All statistics are calculated for a minimum contact duration (in minutes). As
contact duration increases, nodes drop out of the network if they do not have a contact that satisfies the minimum contact duration. (A) Hence, the
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realizations, we picked two random, not isolated nodes and

swapped their vaccination status. This procedure was repeated

300 times for each of the 1,000 realizations. Finally, we calculated

the vaccination assortativity and the size of the largest connected

component of the sub-network of non-vaccinated individuals for

each of these 1,000 networks.

Disease outbreak simulations
We used an individual-based model of influenza spread to

elucidate the effect of vaccination assortativity on disease spread.

The core of the model is described in detail elsewhere [22], and

was implemented in Python 2.7.3 (EPD 7.3-1, 32-bit). Briefly, we

assumed that only one randomly selected non-vaccinated individ-

ual at the beginning of each simulation run introduces the disease.

All further infections happen within the school population and no

further cases were introduced from outside. We further assumed

reduction in the number, V, of nodes. (B) Density of the graph. (C) Average (av.) degree. (D) Number of edges, E. (E) Maximum (max) cluster size, as a
fraction of total (maximum) network size. (F) Transitivity (i.e., cluster coefficient). (G) Average (Av.) strength as defined by Barrat [42], where the
strength of the node is the total number of CPRs of the node. (H) CV2 of degree. (I) Average (Av.) path length. (J) Modularity, Q, as defined by
Reichardt and Bornholdt [53].
doi:10.1371/journal.pone.0087042.g001

Figure 2. Calculated assortativity coefficient with respect to influenza vaccination status for a minimum contact duration in
minutes: (A) on the first day of contact data collection; (B) on the second day of contact data collection; (C) on the third day of
contact data collection; (D) on the combined contact data from days 1, 2, and 3. In each panel, the red line represents the assortativity
coefficient of the measured network and the black line represents the median assortativity coefficient where vaccination status was randomly
allocated to nodes in the network. The dark gray area covers the range from the first to the third quartile of the random networks. The light gray area
covers the range from the 2.5 to the 97.5 percentile of the random networks.
doi:10.1371/journal.pone.0087042.g002
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that for infection transmission, a minimal cumulative contact

duration of 30 minutes (90 CPRs) per simulation time step was

required. We used a SEIR-type model with time steps of 12 hours.

A simulation week consisted of 14 half days. We assumed that no

contacts among school members were made during the half days

that cover the nighttime as well as on weekends. Potentially

infectious contacts between school members took place during the

half days at school.

The probability that a susceptible individual switches to the

exposed state per time step was (12(120.00767)w), where w is the

accumulated contact time (in CPR) the susceptible individual

spent with infected individuals while at school. Exposed individ-

uals became infectious after a period of time which follows a

Weibull distribution with an offset of half a day and l= 1.10 and

k = 2.21. Due to the rapid deterioration in health associated with

infection with influenza, it is unlikely that a sick individual would

have contact behaviors similar to a healthy individual. To account

for this in our model, we reduced w by 75% in the time step during

which the individual became infectious, and by 100% in the

following time steps before recovery. That means, that infected

individuals were confined to their home and, hence, removed from

the school population after one time step.

Contact networks used for the outbreak simulations
We used two kinds of empirical contact data for our simulations:

(i) contact data that were collected during the three different school

days in spring 2012 and for which we have empirical vaccination

data; and (ii) contact data that were previously collected on one

school day in 2010 [26]. We do not have empirical vaccination

data for the 2010 dataset. The contact data that was collected in

2010, however, covers almost the entire (94%) school population.

We assumed that non-vaccinated individuals were fully suscep-

tible. Vaccinated individuals were either partially or fully immune,

depending on the assumed vaccine efficacy (VE). In an idealized

scenario of a vaccine that confers perfect immunity, outbreaks can

only spread on the sub-networks that are defined by all non-

vaccinated individuals and their close-contact interactions. In the

case of VE,1, vaccinated individuals can get infected. However,

the individuals’ infection probability was multiplied with the

relative risk RR = 12VE, and therefore was lower than that of

non-vaccinated individuals. The resulting effective transmission

probability was, hence, RRN(12(120.00767)w).

Simulations based on the 2012 contact and vaccination
data

For the 2012 data, simulations used only the data from those

individuals who participated in all three contact data collection

days, and who additionally reported their seasonal influenza

vaccination status (N = 216). Contact data from one of the three

data collection days were then randomly allocated to each half-day

during the daytime of the five weekdays. We assumed a VE = 1.0,

and ran simulations on two classes of contact networks. The first

sets of simulations were run using 100 networks with identical

topology and identical vaccination patterns based on the collected

contact data and the reported vaccination statuses. The second

sets of simulations were run using 100 networks with identical

topology based on the collected contact data, but with randomized

vaccination patterns. We performed 300,000 simulation runs for

each of the 100 networks in the two different classes. Disease

dynamics were compared according to the mean outbreak size

that resulted from the simulation runs. We defined outbreak size as

the total number of infected individuals throughout a simulation

run minus the index case.

Simulations based on the 2010 contact data
In 2010, contact data were collected during one school day as

reported previously [26]. The data collection covered 94% of the

school population, but information about the participants’

vaccination status was not collected. Therefore, we created two

different kinds of synthetic vaccination data for the 2010 contact

data: (i) we randomly assigned a vaccination status to each

member of the population, and (ii) we randomly assigned a

vaccination status to each member of the population and changed

the pattern until a predefined vaccination assortativity was

reached. We aimed for a vaccination assortativity r = 0.1 because

the empirical vaccination assortativity of all three days in the 2012

collection was approximately 0.1 for contacts with a minimal

duration of 90 CPR (Fig. 2). The procedure with which we

achieved predefined vaccination assortativity values is described in

the online supplementary material.

We compared simulated outbreaks on networks with randomly

assigned vaccination patterns to simulated outbreaks on networks

with vaccination assortativity r = 0.1 with respect to outbreak

probability. Since seasonal influenza vaccine efficacy varies and

depends on a number of different factors [27–32], and vaccination

uptake, among other factors, are subject to behavioral influences

[22,33], we allowed vaccination coverage of 40, 50, and 60

percent and influenza VE values of 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0.

For every possible combination of vaccination coverage and

vaccine efficacy, we ran 10,000 simulation runs for each of 100

different settings with randomly assigned vaccination patterns, and

10,000 runs for each of 100 different settings with vaccination

assortativity r = 0.1.

Results

Network structure and vaccination coverage
At the time this project was implemented in 2012, the total

school population consisted of 974 individuals (715 students and

259 teachers and staff). We collected CPRs from 564 (58%)

individuals of the entire school population on the first day of data

collection, 438 (45%) individuals on the second day, and 487

(50%) on the third day. Four hundred and seven (42%) individuals

responded to the online health survey. Of these 407 individuals,

we obtained contact data for 364 individuals on the first mote day

(89.4% of survey respondents), 292 individuals on the second mote

day (71.7% of respondents), and 320 individuals on the third mote

day (78.6% of respondents).

Overall, from the total of 407 online health survey participants,

169 (41.5%) reported receiving seasonal influenza vaccine; 48.2%

of females were vaccinated compared to 33.5% of males (Table

S1). According to self-reports, teachers and school staff were better

vaccinated (51.9%) than students (39.1%). While the group-

specific vaccination coverage differed for the three mote deploy-

ment days (Tables S2, S3, S4, S5), the qualitative picture was

stable.

We compared network indicators relevant for the spread of

infectious disease between the entire network and the sub-network

that only contained unvaccinated individuals. Descriptive statistics

of these network indicators for all three days combined are shown

in Fig. 1, and each of the individual days is shown in Fig. S1, S2,

S3. Despite differences in absolute values, all network indicators

demonstrated similar trends between the three different data

collection days, or when data from all three days were combined.

For example, for both networks, a giant component [34] existed

until the networks fell apart due to the lack of edges at higher

contact durations, the transitivity (ratio of triangles to triads) [34–

37] was relatively high and the average path length was low, and

Positive Network Assortativity of Influenza Vaccination
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the coefficient of degree variance squared (CV2) - relevant because

basic reproductive number increases for fixed transmissibility as

CV2 increases [38] - was slightly higher with longer contact

duration, but overall remained at very low levels. Finally, for both

networks, the community structure (modularity) [39] was relatively

high, indicating more contact within subgroups than between

subgroups. The larger size of the full network was reflected in the

greater total number of nodes (individuals), edges (total number of

contacts), degree (number of contact partners per node) [40,41]

and strength (degree weighted by duration) [42]. Overall, the

structure of both networks was found to be a modular network

with small world characteristics and with narrow degree distribu-

tions.

Assortativity of influenza vaccination coverage
The assortativity coefficient r [19,20], was calculated with

respect to the influenza vaccination status on contact data

collected on the first, second, and third day of mote deployment,

and when contact data from all three of the days were combined.

Of significance, we found that unvaccinated individuals tended to

associate more often with other unvaccinated than vaccinated

individuals, and that this positive assortativity increased (i) with

longer contact durations, and (ii) when the data from all three days

were combined. Further, the assortativity coefficient, r, of the

measured network was above the 97.5th percentile of assortativity

coefficient resulting from random vaccination patterns, 28% (Day

1; Fig. 2A), and 43% (Day3; Fig. 2C) of the time on single data

collection days, and 50% of the time when data from all three days

were combined (Day 123 combined; Fig. 2D). In other words, the

assortativity calculated on the measured network was significantly

more positive than what would have been expected by chance.

Positive assortativity with respect to the influenza vaccination

status across the entire school network could be driven by

differences in vaccination coverage and assortativity within sub-

networks, such as age, role (student or teacher/staff), gender, or

ethnicity. Using data collected from the online health survey, we

found differences in vaccination coverage with respect to gender,

with more of the female than male population being vaccinated

(48.2% versus 33.5% respectively), and with more teachers/staff

being vaccinated than students (51.9% and 39.1% respectively)

(Table S1). We repeated the above network analyses for each of

the three individual days and all three days combined, where we

had both contact data and survey data (Table S2, S4, S5). We then

calculated the extent to which the different sub-networks

contributed to vaccination assortativity and if supposed relation-

ships between demographic variables and vaccination patterns

were statistically significant. We found a statistically significant

relationship between gender and vaccination patterns, with males

contributing more and females contributing less towards assorta-

tivity than expected if gender and vaccination were unrelated

(Table S6). Statistical significance was determined with a

permutation approach. The full protocol is reported in the

supplementary material.

Largest component size
When we calculated the size of the largest component on the

measured unvaccinated contact network from all three days, and

compared it to an identical contact network where unvaccinated

nodes were randomly distributed, we found that for a given

contact duration, the size of the largest component was almost

always higher for the network measured in this study than for the

network with random vaccination patterns (Fig. 3). For contact

durations #40 min, the measured network essentially consisted of

one large component.

Biases of non-participation on positive vaccine
assortativity

Non-participation in both the contact study and the online

health survey could have influenced the measured vaccination

coverage as well as the observed positive assortativity of

vaccination status. Using a larger and almost complete contact

data set that we collected from the same school in 2010 [26], we

tested whether non-participation could have resulted in biases in

our results. In particular, we allowed nodes to drop out of the

network (i) randomly or (ii) in positively assortative manner. The

full protocol is reported in the supplementary material. Our results

indicate that the vaccination coverage of the participating

subpopulation is an unbiased estimate of the school-wide

vaccination coverage (Fig. S4), and also that the measured

assortativity in influenza vaccination is either unbiased (in the

case of random non-participation) or may actually underestimate

assortativity (in the case of positively assortative non- participation)

(Fig. S5). Together, these results suggest that our observation of

positive assortativity with respect to influenza vaccination is either

not biased or even underestimated by non-participation.

Simulations for mean outbreak size on positively
assortative versus random networks

We simulated influenza outbreaks on the measured, assortative

network, and on 100 networks with identical topology, but where

the vaccination status of the nodes was randomly rearranged. We

assumed that an index case becomes infected outside of school on

a random day during the week and disease transmission at the

school occurs during half of each weekday. These simulation

settings represent a base scenario wherein a single infectious index

case introduces the disease into the school population. We found

that there was still a 14.9% increase in mean outbreak size on the

measured assortative network when we presumed that infected

individuals removed themselves from school after 2 hours,

assuming an 8-hour school day (Welch’s t-test: t (108.2) = 13.3,

p,.001), and a 21.2% increase in mean outbreak size when we

assumed infected individuals remained at school for the entire day

(Welch’s t-test: t (104.9) = 15.5, p,.001).

Simulations for likelihood of large disease outbreaks on
positively assortative versus random networks

Positive assortativity with respect to influenza vaccination status

also has the potential to increase the likelihood of large disease

outbreaks. To quantify this effect, we simulated influenza

outbreaks on an almost complete network of close contacts that

we measured previously at the same high school in 2010. Fig. 4A–

C shows that the relative risk of an influenza outbreak can be

increased when susceptibility to disease is positively assortative

compared to a contact network with randomly distributed

vaccination status, and that this relative difference increases with

higher vaccination coverage and higher vaccine efficacies.

Discussion

In a US high school network of close contacts, we observed that

unvaccinated individuals tended to socially associate (the network

was positively assortative) more often with other unvaccinated

individuals than could be expected by chance, and that

assortativity was most pronounced when we analyzed contact

data collected over multiple days (Fig. 2). In disease simulation

models, the mean outbreak size tended to be larger for positively

assortative networks than for identical networks where the

vaccination status of each individual was randomly allocated.

Positive Network Assortativity of Influenza Vaccination
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Figure 3. Size of the largest connected component: sub-network of non-vaccinated individuals. The figure is based on the cumulative
network of all three data collection days. The red line shows the empirical size of the largest component for a minimum contact duration in minutes.
The black line shows the median size of the largest component for identical contact networks with random vaccination patterns for a minimum
contact duration; the dark gray area covers the range from the first to the third quartile. The light gray area covers the range from the 2.5 to the 97.5
percentile.
doi:10.1371/journal.pone.0087042.g003

Figure 4. Probability of disease outbreaks that involve at least a given fraction of the susceptible population for contact networks
with positively assortative vaccination status relative to contact networks with randomly distributed vaccination status. Networks
were constructed by adding a vaccination status to all nodes of the contact network at 90 CPR that was measured at the high school in 2010.
Simulations used 100 networks with randomly distributed vaccination status and 100 networks with positively assortative vaccination status
(assortativity index r = 0.1 at 90 CPR). Relative risks of outbreaks (vertical axes) are defined as the ratio of the median of the vaccine assortative
networks’ outbreak probabilities to the median of the outbreak probabilities in random networks and are based on 10,000 simulation runs for each
network setting. Minimal outbreak size (horizontal axes) are defined as percent of the susceptible population, which is the number of unvaccinated
individuals plus the number of vaccinated individuals times the complement of the assumed vaccine efficacy (12VE). Thus, each point on the colored
lines represents the difference in probability of a disease outbreak based on the ratios between randomly and positively assortative networks for a
given minimal outbreak size, and for different vaccine efficacies of 0.5, 0.6, 0.7, 0.8, & 1.0, and assuming: (A) 40%, (B) 50%, and (C) 60% vaccination
coverage.
doi:10.1371/journal.pone.0087042.g004

Positive Network Assortativity of Influenza Vaccination
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Gender-based differences in vaccine uptake were especially

noteworthy, with more females than males being vaccinated

(Tables S1, S2, S3, S4, S5), and with unvaccinated males driving

the overall positive vaccine assortativity (Table S6). These data

suggest that the assortativity of entire networks can be driven by

the differences in vaccination uptake within subgroups.

Seasonal influenza vaccination programs rely on an efficacious

vaccine [31,32,43], and high vaccine coverage [43–46]. Targeted

vaccination of school-aged children - the main transmitters of

influenza - is believed to be particularly important in averting

infections to the wider community [12,47]. It has also been shown

that the highest population-wide effect of vaccination campaigns

can be achieved, if the reproduction rate within pivotal groups like

schools can be brought under the local epidemic threshold [23].

There is an increased understanding, however, that the distribu-

tion of vaccinated individuals across populations irrespective of

high coverage will also significantly affect disease outcomes. If

unvaccinated individuals are socially clustered, the probability of

large outbreaks is increased due to reductions in herd immunity

[18,22]. Previous studies have reported assortativity in networks

relevant for infectious disease spread. For example, contact

network data previously collected from the same school as

reported in this study [26] described positive assortativity with

respect to role (student, teacher, staff). Further, analysis of online

social media data has shown that geographic clustering of

sentiments towards vaccination can result in increased probability

of infection (if those sentiments result in true intentions to

vaccinate or not) [22]. Our data, however, provide the first

empirical evidence that vaccination against influenza can be

positively assortative across a contact network (Fig. 2), and that this

has consequences for simulation models of vaccine- preventable

disease outbreaks.

Despite differences in absolute values, we found that patterns of

relevant network indicators did not differ qualitatively between the

full network and the network of unvaccinated susceptible

individuals, during each of the individual days of contact data

collection, or when contact data from all three days were

combined (Fig. 1; Fig. S1, S2, S3). Positive assortativity with

regard to influenza vaccination status, however, was a significant

feature of this network and increased in a positive direction for

individuals who were in contact for the longest, and was larger

when data from all three days were combined (Fig. 2).

Gender-based assortativity in schools has been reported to be

relevant for the spread of influenza [4] Our finding of gender-

based differences in vaccination coverage at this particular school,

with more females being vaccinated than males, is also consistent

with previous reports [48]. In this study, however, we further

demonstrate that gender-based differences in vaccination status

can drive overall vaccine assortativity (Fig. S6, S7; Table S6). This

suggests that increasing the vaccination coverage of males in this

particular network could reduce vaccination assortativity in

addition to increasing overall vaccination coverage. This result

has important public health implications, because the strategies

needed to increase vaccination coverage in males may be different

than for females.

If all unvaccinated individuals form one large connected

component, then, at least in principle, all unvaccinated individuals

could become infected during an outbreak, even if only a single

individual introduced the outbreak. If, however, the network falls

apart into numerous disconnected components, since we assume

only one seed node, then the maximal outbreak size is limited to

the size of the largest of these components. When we calculated

the size of the largest component on the measured unvaccinated

contact network from all three days, and compared it to an

identical contact network where unvaccinated nodes were

randomly distributed, we found that for a given contact duration,

the size of the largest component was almost always higher for the

network measured in this study than for the network with random

vaccination patterns (Fig. 3). In particular, the size of the largest

component of the measured network was significantly larger than

the size of the largest component from a network with a random

vaccination distribution for contact durations between 29 and

53 minutes. However, given that the effect of assortativity on the

largest component was restricted to contacts of longer duration,

and the uncertainty in the duration of contact needed for influenza

transmission, the relevance of this for disease transmission

warrants further investigation.

When we simulated influenza outbreaks on the measured,

assortative network, and compared them to networks with

identical topology, but where the vaccination status of the nodes

was randomly rearranged, we calculated a 14.9% and 21.2%

increase in mean outbreak size on the measured assortative

network when we assumed infected individuals removed them-

selves from school after 2 hours, or remained at school for the

entire day 8 hour day, respectively.

Additionally, we show that positive assortativity with respect to

influenza vaccination can result in a larger outbreak probability

than if vaccination was randomly distributed across a network.

The relative difference (risk) in outbreak probability between the

assortative and random network also increases with outbreak size.

Outbreak relative differences further increase with higher vacci-

nation coverage and higher vaccine efficacies (Fig. 4A–C). This

means that although overall increases in vaccine efficacy and

vaccination coverage (above 0.6 and 40% respectively) could result

in an overall reduction in disease as more people are vaccinated,

the risk of a disease outbreak could be considerably underestimat-

ed at higher efficacies and higher rates, if assortativity of

vaccination status is not taken into account. At lower efficacies

and lower rates, however, the relative difference between positively

assortative and random network becomes less important, as

everyone is more susceptible to disease.

There are several limitations in our study. First, participation for

each single mote day and for the online health survey did not

cover the entire school population. The group of individuals that

participated in all three mote collection days consisted of 216

(22%) individuals out of a total school population of 974. This

partial participation rate potentially affected our study results in

three ways: (i) as only a sub-network of the school population was

covered, any outbreak simulation that is solely based on such a

sub-network will unavoidably underestimate potential outbreak

dynamics; (ii) our overall sample size was small, making it more

difficult to distinguish signals from results of pure chance; (iii) our

statistic results based on a small sample size with unknown

mechanisms of non-participation might have been erroneous or

even biased.

We addressed the first point by simulating influenza outbreaks

on the measured network, and compared the outputs with a more

complete contact network from data that we previously collected

at the same high school in 2010 [26]. To address the second point,

we generated networks with identical topology, but randomly

rearranged the vaccination status of the nodes. We were able to

show that the measured network of unvaccinated individuals was

significantly more connected, and the full network had signifi-

cantly higher vaccination assortativity values than networks with

random vaccination (Fig. 2). To address the third point, we tested

potential sources of bias due to non-participation and found our

results to be non-biased, and in particular our assortativity
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calculations may potentially underestimate the actual assortativity

at the school (Fig. S4, S5).

Another limitation is that our influenza simulations relied on

assumptions regarding the host-pathogen system and the biology

and mechanics of disease transmission. We assumed that influenza

transmission requires close-contact [3,5,11,49], and that very short

contacts are not sufficient to transmit infection and some

accumulation of infectious material during prolonged contacts is

required to initiate infection [50]. Although prolonged contacts in

age-based contact matrices were found to explain serological

patterns (antibody titers by age group) better than shorter contacts

[51–52], it remains to be established whether assuming a contact

duration threshold in simulations is justified. Further, whether our

results are applicable to other US schools or communities, or

schools in other countries, remains to be determined. Finally, our

vaccine assortativity analyses used self-reported vaccination

statuses, which were not verified by health records or by a health

care provider.

We empirically measured a contact network at a US high school

and found the network to be positively assortative with respect to

influenza vaccination status, and that positively assortative

networks can increase probabilities of disease outbreak. The

strength of this study is that vaccination status was obtained

directly from individuals within an empirical network that is

relevant for influenza transmission. This compares advantageously

to electronic communication networks (e.g., Twitter) that do not

necessarily reflect contact networks that are needed to transmit

infectious disease [22]. By combining high-resolution contact data

with survey data, we detected gender-based differences in self-

reported influenza vaccination status that contributed significantly

to the measured positive vaccine assortativity. These data highlight

that researchers should account for assortativity by vaccination

status in mathematical models of infectious disease transmission,

and that public health officials, in addition to increasing vaccine

efficacy and overall vaccination coverage, should recognize that

the distribution of vaccinated individuals across populations could

also play a role in outbreak size.

Supporting Information

Figure S1 Network statistics from the first day of
contact data collection. See Figure 1 for a description of line

colors and the network properties analyzed.

(EPS)

Figure S2 Network statistics from the second day of
contact data collection. See Figure 1 for a description of line

colors and the network properties analyzed.

(EPS)

Figure S3 Network statistics from the third day of
contact data collect. See Figure 1 for a description of line colors

and the network properties analyzed.

(EPS)

Figure S4 Distribution of vaccination coverage in school
sub-populations. The entire school population had a prede-

fined vaccination coverage of 50%. Light gray boxplots show the

vaccination coverage of subpopulations that resulted from a

dropout of D = 560 individuals out of 761 from the contact

network data collected in 2010 (CPR. = 90); dark gray boxplots

from a dropout of D = 360 individuals. Dropout occurred either

randomly or with dropout assortativity of r = 0.2 or r = 0.4.

(EPS)

Figure S5 Distribution of vaccination assortativity in
school sub-populations. The entire school population had a

predefined vaccination assortativity of r = 0.2. The light gray

boxplots show vaccination assortativity values of sub-populations

that resulted from a dropout of D = 560 individuals out of 761

from the contact network data collected in 2010 (CPR. = 90); the

dark gray boxplots from a dropout of D = 360 individuals.

Dropout occurred either randomly or with dropout assortativity

of r = 0.2 or r = 0.4.

(EPS)

Figure S6 Calculated gender assortativity coefficient for
a minimum contact duration in minutes, on the first
(red), second (blue), and third (green) days of data
collection, and when the data from all three days were
combined (purple).

(EPS)

Figure S7 Calculated vaccination assortativity coeffi-
cient within gender subnetworks: (A) on the first day of
contact data collection; (B) on the second day of contact
data collection; (C) on the third day of contact data
collection; (D) on the combined contact data from days
1, 2 and 3. In each panel, the solid blue line represents the

assortativity coefficient for the female population and the solid red

line represents the assortativity coefficient for the male population.

The dotted lines represent the respective number of edges in each

female and male sub-network.

(EPS)

Table S1 Self-reported* seasonal influenza vaccination
coverage by demographic group for all survey partici-
pants (n = 407).

(DOCX)

Table S2 Self-reported* vaccination coverage by demo-
graphic characteristics for mote day 1, Tuesday,
January 24th, 2012 (n = 287). Inclusion criteria: (i) at least

one contact of at least 90 CPR, and (ii) survey participation.

(DOCX)

Table S3 Self-reported* vaccination coverage by demo-
graphic characterisitcs for mote day 2, Friday, March
2nd, 2012 (n = 227). Inclusion criteria: (i) at least one contact of

at least 90 CPR, and (ii) survey participation.

(DOCX)

Table S4 Self-reported* vaccination coverage by demo-
graphic characteristics for mote day 3, Tuesday, March
3rd, 2012 (n = 247). Inclusion criteria: (i) at least one
contact of at least 90 CPR, and (ii) survey participation.

(DOCX)

Table S5 Self-reported* vaccination coverage by demo-
graphic characteristics for mote days 1, 2, and 3
combined (n = 209). Inclusion criteria: (i) at least one contact

of at least 90 CPR, and (ii) survey participation.

(DOCX)

Table S6 Statistic p, a measure of the contribution of a
demographic characteristic to network assortativity, by
demographic characteristic. The first line of each cell

contains the empirical value of p.The second line contains the

empirical 95% confidence intervals for p under the assumption

that demographic properties and vaccination patterns are

unrelated.

(DOCX)

Methods S1

(DOCX)
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